Insect pollination played an important role in the evolution of angiosperms. Little is known, however, about ancient pollination insects and their niche diversity during the pre-angiosperm period due to the rarity of fossil evidence of plant-pollinator interactions.
![]() |
| (a) Jurassic kalligrammatids in the Daohugou forest; (b) Cretaceous kalligrammatids in the Burmese amber forest [Credit: Yang Dinghua] |
One of the most intensely investigated examples of pollination niches is the morphological match between insect proboscis and floral tube length, which Darwin described in a publication in 1877. Kalligrammatid lacewings are among the largest and most conspicuous Mesozoic insects with siphoning mouthparts.
The NIGPAS researchers reported 27 well-preserved kalligrammatids from late Cretaceous Burmese amber (99 Ma) and Chinese Early Cretaceous (125 Ma) and Middle Jurassic (165 Ma) compression rocks.
![]() |
| Jurassic and Cretaceous kalligrammatids from China [Credit: NIGPAS] |
If pollination niches were partitioned, as in extant ecosystems, this likely increased pollination effectiveness and reduced the cost of pollination mutualism, thus contributing to the high diversity of pollinating insects and the success of pollinator-dependent plants during the Cretaceous period.
Kalligrammatid species diversification was potentially promoted by coevolution between pollinating kalligrammatids and their host plants under highly partitioned pollination niches.
![]() |
| Kalligrammatids in Burmese amber [Credit: NIGPAS] |
However, such elaborate associations between kalligrammatids and their host plants (mostly confined to gymnosperms) could have been a key factor contributing to the extinction of kalligrammatids, which likely occurred during the late Cretaceous with the decline in gymnosperm diversity.
Source: Chinese Academy of Sciences [September 17, 2018]









No comments: