Fractured rocks of impact craters have been suggested to host deep microbial communities on Earth, and potentially other terrestrial planets, yet direct evidence remains elusive. In a new study published in Nature Communications, a team of researchers shows that the largest impact crater in Europe, the Siljan impact structure, Sweden, has hosted long-term deep microbial activity.
![]() |
Credit: H. Drake/Linnaeus University |
At the scenic site of Siljan, in the heart of Sweden, an impressive impact structure of >50 km diameter formed almost 400 million years ago. Previous well-known drilling attempts for deep natural gas are now renewed, and from these newly retrieved drill cores, a team of researchers have found widespread evidence of deep ancient life.
Henrik Drake, of the Linnaeus University, Sweden, and lead author of the study, explains the discovery: "We examined the intensively fractured rock at significant depth in the crater and noted tiny crystals of calcium carbonate and sulphide in the fractures. When we analyzed the chemical composition within these crystals it became clear to us that they formed following microbial activity. Specifically, the relative abundance of different isotopes of carbon and sulfur within these minerals tells us that microorganisms that produce and consume the greenhouse gas methane have been present, and also microbes that reduce sulfate into sulfide. These are isotopic fingerprints for ancient life."
![]() |
An illustrated meteorite impact scenario to exemplify the Siljan impact event [Credit: Henrik Drake/Linnaeus University] |
"At Siljan we see that the crater is colonized but that it has mainly occurred when conditions, such as temperature, became more favorable than at the impact event. The impact structure itself, with a ring zone of down-faulted Paleozoic sediments, has been optimal for deep colonization, because organics and hydrocarbons from shales have migrated throughout the fractured crater and have acted as energy sources for the deep microbial communities."
Christine Heim, of University of Gottingen, Germany, co-author adds: "The preserved organic molecules that we could detect within the minerals give us additional evidence both for microbial activity in the crater, as we find molecules specific to certain microorganisms, but also for microbial biodegradation of shale-derived hydrocarbons, ultimately leading to production of secondary microbial methane at depth."
Henrik Drake summarizes: "Our findings indeed confirm that impact craters are favorable microbial habitats on Earth and perhaps beyond."
Source: Linnaeus University [October 18, 2019]
No comments: