Twenty-four years ago, Swiss astronomers Michel Mayor and Didier Queloz discovered the first planet orbiting a sun-like star outside our solar system—a milestone recognised by this year's Nobel prize in physics. Today we know of thousands more 'exoplanets," and researchers are now trying to understand when and how they form.
The way that a young exoplanet interacts with its star's disc of dust and gas determines the type of exoplanet that will ultimately form [Credit: NASA/JPL-Caltech/D. Berry] |
Some have meandering orbits, whereas others orbit not one star but two. Some have the modest mass and temperatures that are thought necessary to support life, while some are hellish balls of heat and crushing gravity. Some exoplanets appear to orbit their stars alone, while others orbit along with several other planets, like Earth in our solar system.
The vast majority of those we've discovered so far, however, are Earth- to Jupiter-sized planets that orbit very close to their host stars—often closer than Mercury orbits the sun. Astronomers are trying to understand how these close-orbiting planets came into existence by studying examples in different—preferably early—stages of formation.
To see through the noise, Dr. Bouvier and colleagues are employing some of the world's most powerful telescope arrays, such as the European Southern Observatory's Very Large Telescope Interferometer on the Paranal mountain in Chile. Meanwhile, computer simulations of how a young planet disturbs the disc of gas and dust surrounding its nascent star will help them know how to spot young exoplanets in real space.
Close-orbiting
The researchers hope that their project, SPIDI, will lead to the discovery of close-orbiting exoplanets as they are forming, when they are about a million years old. "One million years—that corresponds to about two days on the scale of a human lifetime," said Dr. Bouvier.
The project will probably not shed light on the formation of exoplanets with other types of orbit, however. And the type of orbit is important, because it determines the conditions on an exoplanet's surface—and potentially whether it is habitable.
Each type of exoplanet and exoplanet orbit could be studied individually. But Professor Richard Alexander of the University of Leicester in the UK believes that by studying different types of exoplanets orbiting different stars there is less chance of missing important processes that help make up the big picture of planetary formation.
Star's disc
Somehow, the way that a young exoplanet interacts with its star's disc of dust and gas determines the type of exoplanet that will ultimately form. Prof. Alexander's project, BuildingPlanS, involves developing computer simulations that predict the effect of different formation processes.
These simulations can be tested against observations to see whether the processes they describe are accurate.
The approach is paying off. In one recent study, led by Prof. Alexander's colleague Dr. Dipierro at the University of Leicester, UK, the computer simulations suggested that a ring observed in the disc of a star called Elias 24 is the path cleared by an orbiting, as-yet unidentified, gas-giant planet.
Astrophysicists know that, in the very beginning, planets form as dust and gas accumulate under gravity. But this earliest phase of planet formation is especially hard to study.
The trouble is that the dust and the gas around young stars each evolve in very complex ways, and studying how they form planets together requires a lot of expertise and computing power. Traditionally, therefore, dust and gas have been simulated as separate processes.
Knotted
But as Dr. Mario Flock of the Max Planck Institute for Astronomy in Heidelberg, Germany, points out, the two processes cannot be truly separated. For instance, the presence of dust can reduce turbulence in the gas, while the turbulence of the gas impacts the size and fragmentation of the dust grains.
UFOS, Dr. Flock and colleagues are starting to unite gas and dust simulations for the first time, to accurately describe some of the earliest stages of planetary formation. Their hope is to explain some of the features seen in very young stellar disks—spirals and rings—as the footprints of embryonic dust grains clumping together.
The biggest challenge here, says Dr. Flock, is finding the right scales of time and space over which gas and dust interact with the most influence. "That requires huge expertise in magneto-hydrodynamics, dust coagulation, numerical tools and high-performance computing.
"If we succeed to link the sites of grain growth and planet formation with current observations—that would be the highest goal," he continued. "It would help us to understand what's currently happening in systems we observe now."
Author: Jon Cartwright | Source: Horizon: The EU Research & Innovation Magazine [November 18, 2019]
No comments: