Theme images by kelvinjay. Powered by Blogger.

USA

AFRICA

ASIA

Brazil

Portugal

United Kingdom

Switzerland

» » » » Radio emission from a neutron star’s magnetic pole revealed by general relativity


Pulsars in binary systems are affected by relativistic effects, causing the spin axes of each pulsar to change their direction with time. A research team led by Gregory Desvignes from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has used radio observations of the source PSR J1906+0746 to reconstruct the polarised emission over the pulsar's magnetic pole and to predict the disappearance of the detectable emission by 2028. Observations of this system confirm the validity of a 50-year old model that relates the pulsar's radiation to its geometry. The researchers are also able to precisely measure the rate of change in spin direction and find an excellent agreement with the predictions of Einstein's general theory of relativity.

Radio emission from a neutron star’s magnetic pole revealed by general relativity
PSR J1906+0746:The relativistic effect of a pulsar‘s spin precession enables the resolution of the beam
structure of the pulsar [Credit: © Gregory Desvignes & Michael Kramer, MPIfR]
The experiment is the most challenging test to date of this important effect of relativistic spin precession for strongly self-gravitating bodies. Moreover, the reconstructed radio beam shape has implications for the population of neutron stars and the expected rate of neutron star mergers as observed by gravitational wave detectors such as LIGO.

Pulsars are fast-spinning neutron stars that concentrate 40 percent more mass than the Sun—or more! – into a small sphere of only about 20 km diameter. They have extremely strong magnetic fields and emit a beam of radio waves along their magnetic axes above each of their opposite magnetic poles. Due to their stable rotation, a lighthouse effect produces pulsed signals that arrive on Earth with the accuracy of an atomic clock. The large mass, the compactness of the source, and the clock-like properties allows astronomers to use them as laboratories to test Einstein's general theory of relativity.


The theory predicts that spacetime is curved by massive bodies such as pulsars. One expected consequence is the effect of relativistic spin precession in binary pulsars. The effect arises from a misalignment of the spin vector of each pulsar with respect to the total angular momentum vector of the binary system, and is most likely caused by an asymmetric supernova explosion. This precession causes the viewing geometry to vary, which can be tested observationally by monitoring systematic changes in the observed pulse profile.

Evidence for a variable pulse profile attributed to changes in the viewing geometry caused by spin precession have been observed and modeled in the Nobel-prize winning Hulse-Taylor binary pulsar B1913+16. Other binary pulsars also show the effect, but none of them has allowed studies at the precision and level of detail obtainable with PSR J1906+0746.

The target is a young pulsar with a spin period of 144 milliseconds in a 4-hour orbit around another neutron star in the direction of the constellation Aquila (the Eagle), pretty close to the plane of the Milky Way.

"PSR J1906+0746 is a unique laboratory in which we can simultaneously constrain the radio pulsar emission physics and test Einstein's general theory of relativity," says Gregory Desvignes from the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn, the first author of the study.

«
Next
Newer Post
»
Previous
Older Post

No comments:

Leave a Reply