Theme images by kelvinjay. Powered by Blogger.

USA

AFRICA

ASIA

Brazil

Portugal

United Kingdom

Switzerland

» » » » Most-detailed-ever simulations of black hole solve longstanding mystery


An international team has constructed the most detailed, highest resolution simulation of a black hole to date. The simulation proves theoretical predictions about the nature of accretion disks -- the matter that orbits and eventually falls into a black hole -- that have never before been seen.

Most-detailed-ever simulations of black hole solve longstanding mystery
This image shows how the inner region of the accretion disk (red) aligns with the equatorial plane of the black hole.
The outer disk is tilted away. The inner disk (where the black curve dips) is horizontal, signaling the long-sought
Bardeen-Petterson alignment [Credit: Sasha Tchekhovskoy/Northwestern University;
Matthew Liska/University of Amsterdam]
Among the findings, the team of computational astrophysicists from Northwestern University, the University of Amsterdam and the University of Oxford found that the inner-most region of an accretion disk aligns with its black hole's equator.

This discovery solves a longstanding mystery, originally presented by Nobel Prize-winning physicist John Bardeen and astrophysicist Jacobus Petterson in 1975. At the time, Bardeen and Petterson argued that a spinning black hole would cause the inner region of a tilted accretion disk to align with its black hole's equatorial plane.

After a decades-long, global race to find the so-called Bardeen-Petterson effect, the team's simulation found that, whereas the outer region of an accretion disk remains tilted, the disk's inner region aligns with the black hole. A smooth warp connects the inner and outer regions. The team solved the mystery by thinning the accretion disk to an unprecedented degree and including the magnetized turbulence that causes the disk to accrete. Previous simulations made a substantial simplification by merely approximating the effects of the turbulence.


"This groundbreaking discovery of Bardeen-Petterson alignment brings closure to a problem that has haunted the astrophysics community for more than four decades," said Northwestern's Alexander Tchekhovskoy, who co-led the research. "These details around the black hole may seem small, but they enormously impact what happens in the galaxy as a whole. They control how fast the black holes spin and, as a result, what effect black holes have on their entire galaxies."

Tchekhovskoy is an assistant professor of physics and astronomy in Northwestern's Weinberg College of Arts and Sciences and a member of CIERA (Center for Interdisciplinary Exploration and Research in Astrophysics), an endowed research center at Northwestern focused on advancing astrophysics studies with an emphasis on interdisciplinary connections. Matthew Liska, a researcher at the University of Amsterdam's Anton Pannenkoek Institute for Astronomy, is the paper's first author.

"These simulations not only solve a 40-year-old problem, but they have demonstrated that, contrary to typical thinking, it is possible to simulate the most luminous accretion disks in full general relativity," Liska said. "This paves the way for a next generation of simulations, which I hope will solve even more important problems surrounding luminous accretion disks."

Elusive alignment

Nearly everything researchers know about black holes has been learned by studying accretion disks. Without the intensely bright ring of gas, dust and other stellar debris that swirls around black holes, astronomers would not be able to spot a black hole in order to study it. Accretion disks also control a black hole's growth and rotation speed, so understanding the nature of accretion disks is key to understanding how black holes evolve and function.

"Alignment affects how accretion disks torque their black holes," Tchekhovskoy said. "So it affects how a black hole's spin evolves over time and launches outflows that impact the evolution of their host galaxies."

«
Next
Newer Post
»
Previous
Older Post

No comments:

Leave a Reply