Theme images by kelvinjay. Powered by Blogger.

USA

AFRICA

ASIA

Brazil

Portugal

United Kingdom

Switzerland

» » » Peeling back the darkness of M87


On April 10, a team of researchers from around the world revealed an image that many believed impossible to produce: a portrait of the shadow cast by a black hole that sits at the center of the galaxy Messier 87 -- 53.49 million light years away.

Peeling back the darkness of M87
Observational appearance of an accretion disk in a General Relativistic Magnetohydrodynamics (GRMHD) simulation
at a radio wavelength. The light rays emitted from the inner part of the disk are bent before their arrival to the "telescope"
due to the gravitational lensing effect and produce the distorted images. The disk is viewed from 45 degrees above the
equatorial plane of the disk. Left side of the image is brighter than the right side due to the Doppler beaming effect:
light emitted from a substance moving toward an observer is brighter than that of light moving away from the
observer. The central black part is the "shadow" of the black hole, which is what EHT is trying to see
[Credit: Hotaka Shiokawa]
A luminous orange circle with a dark center and a bright lip, the image is a product of the Event Horizon Telescope (EHT), a distributed collection of eight, high-altitude radio telescopes scattered around the globe that, when combined, form an Earth-sized observatory capable of capturing distant radio waves with a clarity not possible before.

"We are delighted to report to you today that we have seen what we thought was unseeable," said Shep Doeleman, project director of the Event Horizon Telescope, at the announcement event in Washington D.C

The data from the telescopes was collected during a 2017 global campaign, after decades of scientific, engineering, and computational research and preparation. Results of the work describing various aspects of the research were published in six papers in the Astrophysical Journal Letters this week.

Helping to lay the groundwork for the black hole imaging, and providing the theoretical underpinnings that enabled the researchers to interpret the mass, underlying structure, and orientations of the black hole and its environment, were supercomputers at The University of Texas at Austin's Texas Advanced Computing Center (TACC) -- Stampede1, Stampede2 and Jetstream -- all three of which were supported by grants from the National Science Foundation (NSF), which also provided key funding for the EHT.

"For decades, we have studied how black holes swallow material and power the hearts of galaxies," said Harvard University professor and EHT researcher Ramesh Narayan, who used TACC resources in support of the project. "To finally see a black hole in action, bending its nearby light into a bright ring, is a breathtaking confirmation that supermassive black holes exist and match the appearance expected from our simulations."


Several teams of researchers, including Narayan, used the high-performance resources of Stampede1 and Stampede2 to model the physical attributes of M87 and predict observational features of the black hole.

"We are doing finite difference, three-dimensional simulations with not just gas dynamics, but also magnetic fields," he said. "That includes radiation and what is called two-temperature physics in a general relativistic framework. For these, we really do need TACC's Stampede system with lots of cores and lots of hours."

Predicted images and quantities from simulations were compared to the real EHT observational values and used to validate the model and even fundamental theories such as general relativity, according to Hotaka Shiokawa, a postdoctoral fellow at the Harvard-Smithsonian Center for Astrophysics and another member of the EHT team. Shiokawa's underlying general relativistic magnetohydrodynamics simulations were run on Stampede1 and Stampede2 as well.

"The simulations are computationally very expensive and supercomputers are definitely needed," he said.

After the relativistic simulations of M87 were run, further simulations converted the dynamics of the black hole into a picture of what such a system would look like from the perspective of Earth using ray-tracing methods.

"You pretend you're an observer looking at the system from some viewing angle," said Narayan. "You ask: 'What would I observe if this were the real system? What kind of image I would see at this spectrum?'"

«
Next
Newer Post
»
Previous
Older Post

No comments:

Leave a Reply