Using New Horizons data from the Pluto-Charon flyby in 2015, a Southwest Research Institute-led team of scientists have indirectly discovered a distinct and surprising lack of very small objects in the Kuiper Belt. The evidence for the paucity of small Kuiper Belt objects (KBOs) comes from New Horizons imaging that revealed a dearth of small craters on Pluto's largest satellite, Charon, indicating that impactors from 300 feet to 1 mile (91 meters to 1.6 km) in diameter must also be rare.
"These smaller Kuiper Belt objects are much too small to really see with any telescopes at such a great distance," said SwRI's Dr. Kelsi Singer, the paper's lead author and a co-investigator of NASA's New Horizons mission. "New Horizons flying directly through the Kuiper Belt and collecting data there was key to learning about both large and small bodies of the Belt."
"This breakthrough discovery by New Horizons has deep implications," added the mission's principal investigator, Dr. Alan Stern, also of SwRI. "Just as New Horizons revealed Pluto, its moons, and more recently, the KBO nicknamed Ultima Thule in exquisite detail, Dr. Singer's team revealed key details about the population of KBOs at scales we cannot come close to directly seeing from Earth."
"A major part of the mission of New Horizons is to better understand the Kuiper Belt," said Singer, whose research background studying the geology of the icy moons of Saturn and Jupiter positions her to understand the surface processes seen on KBOs. "With the successful flyby of Ultima Thule early this year, we now have three distinct planetary surfaces to study. This paper uses the data from the Pluto-Charon flyby, which indicate fewer small impact craters than expected. And preliminary results from Ultima Thule support this finding."
![]() |
| Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/K. Singer |
"This surprising lack of small KBOs changes our view of the Kuiper Belt and shows that either its formation or evolution, or both, were somewhat different than those of the asteroid belt between Mars and Jupiter," said Singer. "Perhaps the asteroid belt has more small bodies than the Kuiper Belt because its population experiences more collisions that break up larger objects into smaller ones."
This research was published in the journal Science.
Source: Southwest Research Institute [February 28, 2019]









No comments: