A study simulating the final stages of terrestrial planet formation shows that 'hit-and-run' encounters play a significant role in the acquisition of water by large protoplanets, like those that grew into Mars and Earth. The results will be presented by Christoph Burger at the European Planetary Science Congress (EPSC) 2018 in Berlin.
![]() |
| Artist’s concept of a celestial body about the size of the moon colliding with a body the size of Mercury [Credit: NASA/JPL-Caltech] |
Burger and colleagues from the University of Vienna and Tübingen have used high-resolution simulations to track the fate of water and other materials through a series of different impact scenarios. Outcomes of collisions could include bodies sticking together, material being lost, or being redistributed between the two objects. The results depend on various factors like the speed and angle of impact, the difference in mass between the bodies and their total mass.
"We found that 'hit-and-run' collisions, where the impact is off-centre and the bodies have enough speed to separate again after the encounter, are very common. In these scenarios, tens of percent of water can be transferred between the colliding bodies or ejected and lost entirely," said Burger.
The smaller of the colliding pair is often modified down to the core and effectively stripped of water, while the more-massive body remains more-or-less unaltered. The team is now focusing on how long chains of successive collisions affect the evolution of a disk of planetesimals and protoplanets.
Source: Europlanet [September 19, 2018]








No comments: