There are about 4433 exoplanets in the latest catalogs. Their radii have generally been measured by knowing the radius of their host star and then closely fitting the lightcurves as the planet transits across the face of the star. The radius of the host star is thus a key parameter and latest data release of the Gaia mission has enabled astronomers to improve the accuracy of stellar properties in its catalog very significantly – to a precision in radius of about 8 percent—for nearly one hundred and eight thousand stars in the Kepler exoplanet fields.
The astronomers use their new database to define a new classification scheme for exoplanets. The smallest category consists of planets smaller than four Earth-radii, and within this group are two subgroups: those smaller than two Earth-radii and those between about two and four Earth-radii. These small planets are generally gas poor. The second category has between four and ten Earth-radii, and the team proposes they be called "transitional planets" since they form a bridge between the small class and the large gas giants. There is a relative paucity of objects in this class for reasons that are not well understood.
The third new grouping contains the gas giant planets, those with sizes larger than about 10 Earth-radii and which are dominated by hydrogen and helium; these include Jupiter analogs, and even brown dwarf stars. The authors conclude by observing that the group of two-to-four Earth-radii planets are the ones most likely to have water- rich cores ("water worlds"). They propose that their results will help refine the list of objects selected for observational follow-ups including potentially habitable worlds.
The study is published in Monthly Notices of the Royal Astronomical Society.
Source: Harvard-Smithsonian Center for Astrophysics [September 24, 2018]







No comments: